

Automated Spatial Linkage Vision and Requirements

Craig Wolff, M.S. Eng
CA Environmental Health Tracking Program
Environmental Health Investigations Branch
CA Department of Health Services
Impact Assessment, Inc.

EPHTN Context

- SND Emphasis: Secure network access to environmental public health data/metadata
- SND Tools discussion: help assess and analyze datasets individually
- California is examining EH-ified distributed services model
- What about linkage/integration methods as a service?
- What about environmental health linked data as an EPHTN data product?

What is EH Spatial Linkage?

- The integration of environmental hazard and health data based on spatial relationships
- Spatial linkage <u>begins</u> after geocoding and <u>ends</u> before traditional statistical analysis of epidemiological associations
- Automated for remote procedure calls over the network

e.g. EH Spatial Linkage

A. Point events, B. Area events

Buffer

Intersect

Summarize

Spatial linkage does not:

• Address issues of scientific validity or feasibility directly, though....

• Address data confidentiality and security issues directly, though....

General I/O Methodology

- EPHTN Gateway acts as intermediary for facilitating spatial linkage process & provides storage for linkage product
- Request
 - Health- or hazard-centric? 1° and 2° dataset?
 - Linkage method & parameters
 - Event definitions (spatial/temporal), 2° event metric
- Response
 - Operations performed, errors
 - Location of linkage product

Spatial Geometry/Dimension

• Points, lines, areas, raster? 3-d?

Object Type	Points	Lines	Areas
Examples	(:: <u>.</u>)	%	4
Health	Address geocoded asthma cases	Asthma cases along street segments	Asthma cases within census tracts
Hazard	Drinking water wells	Drinking water distribution pipes	Drinking water service areas

• Linkage methods should treat geometry generically

Spatial Resolution

• Data captured at large scale (high res) are more accurate than data captured at small scale (low res)

 Topological comparisons should be done on geometries having same or similar scale

Spatial Mismatch

- Environmental and health databases are not geo-referenced to the same spatial extent, geometry, AND scale
- For linkage, attributes of one or both datasets must be transformed to account for spatial mismatch
- System operators, not the system, must be thoughtful about quality/appropriateness

Event Definitions

- Event spatio-temporal representation of health and environmental data to be linked
- 1° and 2° dataset event is UID, georeferenced geometry, and time component
- 2° dataset event includes attribute(s) or metric(s) to be transformed to 1° geometry (AKA "secondary event metrics")
- SND Content Modeling subgroup should hammer out EH event definitions as a standard

Transformation

- In EPHTN context, transformation is operation which alters spatial extent, geometry, or scale of health or hazard event
- Goal is to do 1+ (chain) transformations so that the secondary event metric can be merged with the primary event.
- Two types parametric and topological

Parametric Transform

- Input geometry is transformed using one or more scalar input parameters
- Assist in scale mismatch and smoothing issues
- Point-to-point random shift
- Point/line/polygon-to-polygon buffer
- Line-to-point random distance "along" (with offset)
- Line-to-line or area-to-area generalization (node removal at regular intervals)

Topological Transform

- Input geometry is transformed by comparing it topologically to another input geometry
- Scale mismatch between input datasets should be minimized or non-existent
- Topological operators of interest: nearest and <u>intersect</u>

Intersection

• Dimensional Intersection Model: Interior, Boundary, and Exterior (9 combinations for two input geometries)*

- Keep it simple. Neglect unlikely or uninteresting combinations
- Named spatial relationships (relational operators) of interest: crosses, within, and overlaps. Neglect touches & disjoint?

Intersection Output Scalar

- Proportional or absolute value describing secondary input geometry's relationship (distance or area) to transformed output geometry \hat{Q}
- Used in merging 2° event metric with 1° event
- Example: Area(1°) = A_1 , Area(2°) = A_2 , Area(1°\)\(\text{2}\)\(\text{0}\)\(\text{2}\)\(\text{0}\)\(\text{2

Merge the Metric

- Summary operator applied to corresponding secondary event metrics: sum, minimum, maximum, average, frequency, standard deviation
- Output scalar applied to secondary event metric before summarizing about primary event

Software Requirements

- Spatial linkage object model: Interfaces, objects, methods which generically treat health/hazard events and transformations
- I/O entry/exit points: software objects should be serializable to XML schema (SOAP? PHIN-MS?)
- Geographic feature data passed over the wire should follow OGC GML
- Toolkit to assist Tracking partners in exposing their data holdings as spatial linkage services

Next Steps

- Refine vision and requirements... Tools Subgroup (early 2005)
- Lessons to-be-learned from California pilot projects
 - Automated pesticide linkage (early 2005)
 - Automated air contaminant linkage (mid 2005)
 - Automated traffic hazard linkage (mid 2005)
- Contractor completes analysis and implements abstract API components (future projects)

Discussion